General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence Highlights from a Worldwide Review of URL's and Nuclear Waste Disposal Development Paul Witherspoon Earth Sciences Division Lawrence Berkeley National Laboratory ### Increasing use of URLs • 1977 Stripa URL project started in Sweden ### Increasing use of URLs - 1977 Stripa URL project started in Sweden - 1980s Development of URL in Belgium ### Increasing use of URLs - 1977 Stripa URL project started in Sweden - 1980s Development of URL in Belgium - 1980s Development of URL in Canada General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### Whiteshell Research Area, Manitoba Location Map of the Whiteshell Research Area in the province of Manitoba showing the Lac du Bonnet gramite batholith, surface topography (25 m contour interval), drainage and location where URL has been developed. General Training On Methodologies For Geological Disposal in North America ### Increasing use of URLs - 1977 Stripa URL project started in Sweden - 1980s Development of URL in Belgium - 1980s Development of URL in Canada - 1980s Development of two URLs in Switzerland # Colloid and Radionuclide Retardation Test Colloid Transport Schematic representation of the CRR (Colloid and Radionuclide Retardation) test showing how colloids present in groundwater can influence the migration of radionuclides. Colloids in groundwater range in size from one nanometer to one micrometer, but they can also be formed due to the presence of the repository installations. Depending on their properties (e.g. size, charge), colloids can have the effect of either accelerating of delaying the transport of radionuclides and repository installations. Source: Nagra Bulletin 34, 2002 General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence # Opalinus Clay under Scanning Electron Microscope The sample consists of clay minerals which have associated to form sheet-like aggregates. In the center is a feldspar mineral. Source: Nagra Bulletin 35, 2004 General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### Increasing use of URLs - 1977 Stripa URL project started in Sweden - 1980s Development of URL in Belgium - 1980s Development of URL in Canada - 1980s Development of two URLs in Switzerland - 1980s Development of second URL in Sweden at Äspö General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### **SKB Feasibility Study Sites** For almost 30 years, SKB (Swedish Nuclear Fuel and Waste Management Co.) has been working on their concept for a deep geologic repository that involves encapsulating HLW in copper canisters with cast iron inserts, imbedding each canister vertically, and surrounding them with bentonite clay at a depth of about 500 m in bedrock. SKB has also been carrying out feasibility studies at the eight sites shown here from which they selected three within the municipalities of Tierp, Östhammar, and Oskarshamn to determine if they would permit site investigations. The relevant authorities in Östhammar and Oskarshamn agreed to such work, which was initiated in the spring of 2002, and will continue for 5 to 6 years. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### **Äspö Hard Rock Laboratory** In preparing for the siting and construction of a deep repository, SKB has built the Äspö Hard Rock Laboratory (HRL) on the island of Äspö outside Oskarshamn. The HRL is 3600 m in length going down in a spiral to a depth of 450 m. One of the first steps in using the HRL was to develop a procedure for emplacing the copper canisters in the repository tunnel floor. This required the development of a special boring machine that could construct a borehole 175 cm in diameter and 8 m deep and operate in tunnels with a roof height of only 5 m. ### **Copper Canisters** A special procedure for welding and fabrication has been developed to assemble a copper canister with a cast iron insert. The assembly is nearly 5 m long and weighs between 25 and 27 tons when filled with spent fuel. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### **SKB Radiation-shielded Deposition Machine** SKB has developed a prototype of a remote-controlled and radiation-shielded deposition machine to manipulate the heavy copper canisters in a tunnel with a roof height of only 5 m. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### **Layout of Retrieval Test** The repository is designed in such a way that it is possible to retrieve deposited canisters, and KBS is now carrying out a retrieval test to demonstrate that canisters can be freed from water-saturated bentonite under realistic conditions. The schematic layout shows a full-sized canister in a deposition hole surrounded with bentonite, which may take 3-5 years to become saturated. ### Prototype Investigation of KBS-3 Repository Deposition machine during emplicement operation Transportation of deposition machine during the transportation and deposition operation depositi ### Increasing use of URLs 2001 - 1977 Stripa URL project started in Sweden - 1980s Development of URL in Belgium - 1980s Development of URL in Canada - 1980s Development of two URLs in Switzerland - 1980s Development of second URL in Sweden at Äspö - 1996, 6 countries: Belgium, Canada, Japan (2), Sweden, Switzerland (2), USA - 2001, 11 countries: Belgium, Canada, France, Japan (2), Sweden, Switzerland (2), and USA with URLs in operation; France, China, Czech Republic, Poland, and Ukraine with URLs being designed. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ## International Collaboration in Selected European URLs Country (organisation) Belgium SCR-CEN (Buddesentur upor Kemerage * Centre of Bude in Florage Nacional SCR-CEN (Buddesentur upor Kemerage * Centre of Bude in Florage Nacional Carech Republic Rent Selected Sel | | | | | 00 | |---|-----------|---------|--------------------|------------| | | Aspō | Grimsel | Praclay
(Hades) | Mont Terri | | Sweden
SKB (Svensk Kümbränslehantering) | × | × | | | | Switzerland BBW (Bundesamt für Bildung und Wasenschaft, Federal Office for Education and BWG/FOWG (Bundesamt für Wasser und Geologie / Federal Office for Water ar | | × | | ×× | | GNW (Genossenschaft für rusleare Entsorgung Welterberg) Nagra (Nationale Genossenschaft für die Lagerung radioaktiver Abfalle, Swiss Nat Cooperative für the Disposal of Radioactive Waste) | tional X | × | | × | | Spain Enressa (Empresa Nacional de Residuos Radiactivos) | × | × | × | × | | Taiwan ERL/ITRI (Energy and Resources Laboratories / Industrial Vechnology Research II | nstitute) | × | | | | United Kingdom
Nirex (United Kingdom Nuclear Industry Radioactive Waste Executive) | × | | | | | USA
SNL: (Sanctia National Laboratories) | × | × | | | ### **Problems with Public Acceptance of Nuclear Waste Projects** In United Kingdom, Nirex was refused permission in 1997 to construct a URL at their Sellafield project, which led to the termination and abandonment of the project. In a review of the project by the office of the Secretary of State for the Environment, it was noted that the poor design, layout, and arrangements for access to the proposed URL, together with adverse impacts on visual amenities, a protected species (badgers), and the natural beauty of the English Lake District were serious enough to warrant refusal. There were also concerns about scientific uncertainties and technical deficiencies. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### Problems with Public Acceptance of Nuclear Waste Projects In 1993, an extensive site-selection procedure resulted in the nomination of Wellenberg in Central Switzerland as the preferred location for an LILW repository. The principle of using Wellenberg as a repository site was accepted in public referenda in the local community, but in 1995 was blocked by a narrow margin at the cantonal level. Between 1996 and 2001, Wellenberg was evaluated again and a modified disposal concept to proceed with an exploratory drift received the necessary concession from the local government in September 2001. Despite many of their requirements being fulfilled, the 1995 opponents decided to fight the concession with every resource at their disposal. Emotions ran extremely high in the weeks leading up to the cantonal vote in September 2002, with the result that a higher vote against the project than was obtained in 1995 was recorded. Wellenberg has now been officially abandoned, and at present, there are no alternative sites. ### **Radioactive Waste Disposal in Finland** The Finns have developed a successful method of handling this problem. When the first fieldwork for a HLW repository was about to begin, over 15 years ago, Posiva set up a cooperation group with the residents of each community where investigations were to be undertaken. They started with four different sites, and they established four separate cooperation groups. Several meetings with each group, including field trips, were arranged annually, and at the end of each year, a written report was given to each group that summarized all aspects of plans and results. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### Radioactive Waste Disposal in Finland (cont.) Before any significant commitment to a nuclear facility is made, Finnish law requires the passage of a Decision-in-Principle (DiP) by the government, which must include municipal approval. When all fieldwork at the 4 sites was completed, the final selection was based on the outcome of an environmental impact assessment carried out in 1997-1999. The final selection was a site at Olkiluoto in the municipality of Eurojoki, which had rendered a strong vote of approval for the proposed site. In December 2000, the Finnish government approved an application for the DiP that had been made, and on May 18, 2001, Parliament ratified the decision. Finland is the first country in Europe to obtain this kind of governmental approval for an HLW repository site. General Training On Methodologies For Geological Disposal in North America IAEA Network of Centers of Excellence ### Conclusions Investigations on clay beds have revealed a formation with some unusual parameters, for isolating radioactive waste over very long periods of time. One of the most important developments is the recognition that a URL provides an excellent facility for investigating and characterizing the parameters of a rock mass in the underground. Once developed, a URL provides a convenient facility for two or more organizations to conduct joint investigations more economically than would otherwise be possible. A very large number of cooperative projects have developed in Europe to take advantage of the opportunities provided by such joint ventures. The role of the public, as a stakeholder in radioactive waste disposal, has not always been fully appreciated and must be given careful attention. | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Site
Characterization | Prospective
Design/Engineered
Barrier | Near-Term Plans | |-----------|---|--|--|--|--|--| | Argentina | Compoler
Nacional de
Energio Atómica
(CNEA) | TBO | Clap,
evaporites,
volcanoclastic,
grante | Seven provinces chosen
for site-selection
purposes | TEO | Data being organized in GIS. Fracture
mapping of satellite images is under way. | | Armenia | Institute of Geological
Sciences of the
National Academy
of Sciences | Sonikheto-
Karabakh.
Ceneral
folded nones | Volcanic,
gypours,
salt and clay,
granise | Geologic and geophysical
enventigations | TRO | Complete geological, geophysical,
volcariological, and seurosescheinis;
investigations | | Belarue | freelogical
Sciences | Polassie area.
Gomel region | Granine, salt,
clays | Geologic and geophysical
investigations of region,
numerical models of
nuclide migration developed | Originally near-
surface repositories;
srench-type burial in
fature | Choose bursi grounds with ratural
borriers, install borriers where needed,
provide monitor and testing equipment | | Belgium | SOLCEN | TBO—
investigating
Boom and
laper Clay
Formations | Cay | URL used 25 yrs for
Boom Clay research,
now studying effects of
waste heat on safety and
feability of clay | HLW in stainless
steel over-pack with
berconite buckfill
and exocrete liner | EURIDICE Consortium managing URL
research including PRACLAY project on
affects of waste heat on clay | | Bulgaria | Geological
Institute of
Bulgarian
Academy of
Sciences | TBD—
Loess rear
Kodudu NPP
(LE,W), mari at
Sumer and
grante in Sahar
plutten (HLW) | Loss for LILW,
clayey marks
and grasses for
HLW | Site-selection methodology developed, funding needed for specific investigations. | ULW pre-stressed
concrete cubes at
NPP; HLW in deep
repository | Niced worse-management regulatory tool
and funding for goological surveys and
specific investigations | | Carada | Onario Power
Generation
(OPG) | | Grantic | Since 1978, URL and
other facilities used in
site tharacterisation
studies and technology
development. | 2 designs, copper
containers with
wrote in boreholes
or drifts. Buffers
and backfill seal off
containers and rooms. | Develop waste-management
organization to work with all stakeholds
to develop approach that is socially,
environmentally, and financially acceptable | | Chins | Beijing Research
Institute of Uranium
Geology (BRAUG),
China National
Nuclear Corporation
(CNINC). | Jujing Block
in Besthan
region of
Garasi
Frontice,
NW China | Monagento:
granite | Bershan region selected
from geological and geo-
physical investigations: 2
toreholes drilled and
cored | TIO | Conprehensive laboratory studies on
core samples, envestigate two other
blocks in the next five years, and plan to
start URL construction by 2015. | | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Site
Characterization | Prospective
Design/Engin.
Barrier | Near-Term Plans | |---------|--|--|--|---|--|---| | Hungary | Public Agency
for Radinactive
Waste
Management
(PLRAPT) | Uvegleta site
for ULW .
Bods site for
HLW | Grante at
Uveglista site.
Bods
Claystome at
Bods site | At Unightta, site theracterization and social impact programs peer reviewed and approved by IAEA. HLW to be stored at NPP for up to 50yrs pending policy doctoons. | Ac Oveghuta ana,
water drums and
disposal containers
to be emplaced in
tunnels with clay in
backfill massiral. | See characterization and repository design is
Unighted to continue, public outrisch
programs to continue to establish long-arms
instancedup between local communities and
project management. | | Irdia | Bhabba Asomic
Research
Center | Sentars
plotten in
continuest
Aspestion | Grante | Geophysical surveys,
geological and
geochemical studies,
hydrogeological rock-
mechanical tenting
corried out. | TBD | Favorable results over an area of a few
chousand len' indicate need for additional,
more detailed investigations. | | huly | National Agency
for New
Technology,
Energy, and
Environment
(formerly
ENEA) | Near-surface
repository for
LLW Long-
term storage
for HLW at
the same ann. | TBO | Nuclear energy phased
out after 1987, General
site-selection process
using GS methodology,
in three steps, is ongoing
over entire country. | Repostery with modules of reinforced concress concensus and sheel boxes for LLW. Long term storage of HLW in castor-type calds. | Third step in GGI methodology currently
ongoing for 200 satable areas identified in
second step, Repository scheduled to begin
operation in 2009 | | Jopan | For implementation, the Nuclear Waste Mongement Organization of Japan (NUMO); for RAD, Japan Nuclear Cycle Development Institute (JNC) | по | Crystaline or
redirectory
rocks, URLs
at Mourani
and Horosobic | Second programs report
(H12) completed to
demonstrate hashing,
safety, and exhibitly of
disposal concept and to
provide input for future
along and regulatory
processes. Proceeds
methodology being
developed at Maumini
and Horonolde. | Vitrified water in steel over-pack ambedded in becoming and emplaced either in turning or in vertical fusies drilled from lantance of turning. | Keep stakeholders informed on all
directionment sid data-base on PFC website
proofspadic with stread repostory to
visualize under ground system, PAEPO will
heep policy school of promotial area, detail
of phrond repository and bean for final late
asketsion. When on one methodology
commons at both URLs. | | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Site
Characterization | Prospective
Design/Engin.
Barrier | Near-Term Plans | |--------------|---|--|---|--|---|--| | Keres | Kores Hydro &
Naciest Power
Cs. (SO-BP) for
LSW. Kores
Asserts: Energy
Research
Institute
(KARR) for
HE.W | TIO | Andesite for
LILW,
Heateroot
plusmit, rocks
for HLW | Professionary conceptual design and safety and safety assessment for ECW repository in rock current and easily repository in rock accretion and explanation and partners are received as a primary hour rock for MCW repository. Combuted ratio—nucleic engration studies and developed performance assessment code. | Rock storage support and seminary ground wash for LLW. Encapsulars 14, LW. Encapsulars 14, W. in zeroscope resistant concurrent in borsholes, with bennonte buffer, drifted in strends at slepth of 1500 m. | Pedimony assumement of conceptual facilities, for EAS provided from Societies, for EAS provided from Societies, for EAS of the Societies of the separable assument activeness. See specified data required the cent rappe of EAS of the Societies | | Lithuania | Lithuman
Energy leasants | TBD for SNF and LILW Enlaring solid LILW storage facilities at figuration NBP cannot be converted to repositories. | For SNF, clay,
anhydron,
sah, and
oryestillos
bedrock | Analysis is origining,
based on existing data,
and reports | TBD for SNF.
Reference design
for man-surface
LR,W repository
(concrete vaults) | For Del', research to develop compensors in
performance assessment and to releast
deposal concept dat can be adjusted to
different state, development of one-selection
restludesting. For LLW, using for near-
surface repository | | Nietherlands | Movery of
Environment
Sciences
Commission
for Research
(CORA) | Retrievable
disposal site
for HLW at
Borsele NPP | Rock selt, clay | Analysis of long-term
renrieveble storage at
surface and
underground, in either
salt or clay, for up to
300 yrs appears
occhoically feasible | HLW consumer an
individual calls in
tonnel wall.
Crushed salt used
for buffer in salt,
clay-bencome in
slap. | CORA recommends conomission of research
program to further improve technical
solutions and involve stakeholders in ethical
and social aspects. | | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Site
Characterization | Prospective
Design/Engin.
Barrier | Near-Term Plans | |--------------------|---|--|---|---|--|--| | Foliand | National
Access: Energy
Agency of
Poland | Shale at
jurcio and
salt domes at
Damaslowek,
Kilodews, and
Laniets | Triams; shale
in SW Poland,
salt diomes in
the Polish
Lowland | First geological review
led to selection of 64
sites of which foor were
chosen as promising
one to shale and
three in salt domes. | TEO | Continue more detailed are reflection
process, construct URL in one of the
salt dismes to investigate in also
argillaceous-salt conditions. | | Romania | Institute of
Nuclear
Research | TID . | Sale | Long-term safety
assessment for
repository in
typothetical salt
formation has been
carried out. | TID | As size characterization work is curried our
and is size data become available, more
realistic safety assessment investigations will
be made. | | Rossis | Houses, A5-
Russia
Designing and
Research
Institute of
Production
Engineering | Tamak-7,
Kramoyarak-
26, Dinazos-
gard, Hayak,
Niovaya
Zemiya
archipelago | Sand and
sandstone for
liquid wester.
Hand rock for
solid wester. | Liquid weste notation
for worked satisfactorily
since 1763, historico of
solidified waste in hard
rock reasely, mixed out
eres, and permatrost
now being overlighted. | TRO | Disposal of liquid redispostive waste to be
complement by 2015 and property will be short
flows. Solid-fled waste will be stored at
surface which geological repositories are
being researched and constructed, with
operation after 2023. | | Slovsk
Republic | Decom
Streplis | Tribes, Ziar,
Veporske vrchy,
Sudiske vrchy
is grantis; rocke
Carone
vrchovina,
Rimovska
kodina in
sedimemory
rocke | Grante.
sitrocores and
stage | A revised program in development activities that been used to asless 4 prospective grantic sheet and 2 angillateous stems. Selection of a host rock will not be made before 2005. Selection of condidate sizes is expected around 2016. | Proposed depenal consumer with 7
WWER-440 SP
satemblies to have
eater wall of
carbon-steel corond
with noticel and
inner wall of
stainless steel. The
lower cash would be
as also manual allep. | Activities should lead to proposal for a first-
reference Shquell concept, a public-
sessification of projection between the
existing state of projection between these
on single states, performance accessment based
on smillable data, and selection of materials
for legisleered Senter. | | Slovenia | Agency for
Radioactive
Wiston (ARAO) | TBD | Uncorpolidated
sediments,
ford clay,
grante | Areas suitable for LE,W
repository selected
preliminary peological
assessment done | Geological
conditions suitable
for disposal in
surface and
underground | Size suitability investigations to be carried out
solgect to public response. Plan to select size
by 2005. | | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Site
Characterization | Prospective
Design/Engin.
Barrier | Near-Term Plans | |-----------------|--|---|--|---|--|--| | South
Africa | South Africa
Nuclear Energy
Corporation
(NECSA) | Variputs
National
Radioactive
Wante
Disposal
Fecility | Clay, grantes | Ording in Variputs area
(1996) found escalans
grantic rock, but work
was scopped—new
national policy now being
drafted. | TEO | If geologic disposal is to be part of national
policy, all stakeholders are to be involved.
International cooperation is essential, various
options (including regional repository) to be
included. | | Span | Empress
Nacional de
Residuos
Radioactivos
(ENRESA) | THO | Clay, gravite | Detailed analyses of
several potential
repository sizes have
been made. Lurge
database from this work
now being moraged on
ES, which will be up-
dated until 2010. | Cartion-seed caniters embedded for lawcelly in
berconte buffer
speed 2 m apent in
drifts | Develop geologic disposal RAD program-
with models for site chemicars sistems. Now
and transport committee and partners as
securiors. Develop generic design for
repository in city or gramts; study naural
inslogi; establish safety criteria. | | Seeden | Swedsh Nacion
Fuel and Waste
Management
Co. (SKB) | Ostarshamm
in SE Sweden,
Terp and
Outhammer
in cordiers
Uppland | Grante
URL in
grante at
Aspo | Feasibility studies led to. 3 potentially studies sites for deep repository, approved for site investigations seekled from local reunsitysities. URL at Appl conducting RAD on methodology needed for deep repository. | Wiche in copper canstar with cost inserts embedded in bencome in vertical holes in tunnel filled with bencomts and crushed rock at depth of 500 m. | With host approval, she investigations to save in 2002. Plach work on carener Mulricapour informing at Content Libertains in Colambienin, Research on repository in Colambienin, Research on repository exchedible and place tests, and promoting expenditure, backfill and place tests, and promoting expensionly. | | Seitzerheid | National
Cooperative for
the Disposal of
Radioactive
Waste
(NAGRA);
Genomerabult,
for nations
Ensurging
Wellenberg
(GNW) | Wellenberg
for LEW,
HE, WISH
TRU string
studies in
Northern
Switzerland | Mart at
Wellenbarg
clay, grantic
basement in
N. Switz;
URLs at Hr.
Terri in
Opsimal City
and at
Germal in
granter
granter | Wellenberg LE,W site
sicaped at local level
has Mocked at zeromal
level by surrow margin.
Opplines Clay and
grantic bosement in
Northern Switzerland
deamnisely investigated,
including JD seaming
and deep boreholes. | STHEW in steel canadars embedded horizoncally in transits with homizonic buckfill. LLW / TRU in concerns and containers in caverna backfilled with committees or growt | Second rethreshorn in Wildesberg is 2002
any persit exploration handle by pather do
to export application for construction
between the construction of
the construction of the construction
through the construction of the
2002 and the construction of the
2002 and the produced on
2002 and the construction of the
2002 and
2002 and
20 | | Country | Lead
Organization | Potential
Sites | Prospective
Rock Types | Status of Sits
Characterization | Prospective
Design/Engle.
Barrier | Near-Term Plans | | |-------------------|---|---|--------------------------------|--|---|--|--| | Tawan | Fuel Cycle and
Materials
Advantation
(AEC) | Liefe Chu Yu
at Wu-Chiu
Hsiang for
LLRW. SP
nurrently
stored in on-
site pools at
NPPs. | Grante,
stule,
murbicose | ETS for Latie Chie Yu
under review with
Yaiwan EPA. Approval of
feasibility and salesy
analysis reports plus ETS
needed for final approval
of site. | TBD | SF disposal under study in project spanning 40 years (1991-2021). Expect 5F disposal size described by 2018 and repository commissioned by 2022. On-size day sources to supplement on-site pool storage. | | | Ukraine | Institute of
Geological
Sciences | Korossen
plieton and
Malakhou block
in Ukramian
sheld and salt
domes in
Disapper-
Doness
depression | Granze,
sait domes | Size selection and
characterization
methodologies defined,
funding problems with
economic restrictions | THO | Complete F&D on site characterisation (1999-2005), characterise selected site, develop UPA, someostrate parts safety, obtain former and decision on construction (2005-2000). | | | United
Kingdom | United
Kingdom
Nires, Ltd | TIO | TBD | Request for permission to build a URL man
Selfabild rejected by
local council and
decision supported by
Secretary of State for the
Environment.
Work at Selfabild
servinated. | THO | Purliamentary review (1999) points to
need for public acceptance of policy on
waste management before problem
can be settled. Octoor's Parel issues
number of suggestions. Generations
issues proposed (2001) to divelop,
and implement, a wester-management
program that impleme public support
and confidence. | | | United
Screen | United
Scots
Department of
Energy | Yours
Hoursin,
Nevada | Volcanic tuff | Site selection and site
characterization
methodologies have been
developed and applied in
evaluating Yucca Mountain | Waste within two concentric cylinders (stainless steel misde corresson-resistant nickal alloy) covered with dry shield and placed horizontally in drifts. | Quentizative assistanteers of long-term, performance of responsity for various finatures, events, and processes is ongoing. Performance-conformation program essolibated to monitor and conform repository is behaving as expected. These preclaims period activities may last up to 200 years. | |